Course No.	Course Name	L-T-P Credits	Year of Introduction
CS361 | SOFT COMPUTING | 3-0-0-3 | 2015

Course Objectives
To introduce the concepts in Soft Computing such as Artificial Neural Networks, Fuzzy logic-based systems, genetic algorithm-based systems and their hybrids.

Syllabus
Introduction to Soft Computing, Artificial Neural Networks, Fuzzy Logic and Fuzzy systems, Genetic Algorithms, hybrid systems.

Expected Outcome
Student is able to
1. Learn about soft computing techniques and their applications.
2. Analyze various neural network architectures.
3. Define the fuzzy systems.
4. Understand the genetic algorithm concepts and their applications.
5. Identify and select a suitable Soft Computing technology to solve the problem; construct a solution and implement a Soft Computing solution.

Text Books
1. S. N. Sivanandam and S. N. Deepa, Principles of soft computing - Wiley India.
2. Timothy J. Ross, Fuzzy Logic with engineering applications – Wiley India.

References
<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
<th>Sem. Exam Marks %</th>
</tr>
</thead>
</table>
| I | Introduction to Soft Computing
Artificial neural networks - biological neurons, Basic models of artificial neural networks – Connections, Learning,
Activation Functions, McCulloch and Pitts Neuron, Hebb network. | 08 | 15% |
| II | Perceptron networks – Learning rule – Training and testing algorithm, Adaptive Linear Neuron, Back propagation Network – Architecture, Training algorithm | 08 | 15% |
| III | Fuzzy logic - fuzzy sets - properties - operations on fuzzy sets, fuzzy relations - operations on fuzzy relations | 07 | 15% |
| IV | Fuzzy membership functions, fuzzification, Methods of membership value assignments – intuition – inference – rank ordering, Lambda –cuts for fuzzy sets, Defuzzification methods | 07 | 15% |
| V | Truth values and Tables in Fuzzy Logic, Fuzzy propositions, Formation of fuzzy rules - Decomposition of rules – Aggregation of rules, Fuzzy Inference Systems - Mamdani and Sugeno types, Neuro-fuzzy hybrid systems - characteristics - classification | 08 | 20% |
| VI | Introduction to genetic algorithm, operators in genetic algorithm - coding - selection - cross over – mutation, Stopping condition for genetic algorithm flow, Genetic-neuro hybrid systems, Genetic-Fuzzy rule based system | 08 | 20% |

END SEMESTER EXAMINATION

Question Paper Pattern

For more study materials>www.ktustudents.in
1. There will be five parts in the question paper – A, B, C, D, E
2. Part A
 a. Total marks : 12
 b. *Four* questions each having 3 marks, uniformly covering modules I and II; *All four* questions have to be answered.
3. Part B
 a. Total marks : 18
 b. *Three* questions each having 9 marks, uniformly covering modules I and II; *Two* questions have to be answered. Each question can have a maximum of three sub-parts
4. Part C
 a. Total marks : 12
 b. *Four* questions each having 3 marks, uniformly covering modules III and IV; *All four* questions have to be answered.
5. Part D
 a. Total marks : 18
 b. *Three* questions each having 9 marks, uniformly covering modules III and IV; *Two* questions have to be answered. Each question can have a maximum of three sub-parts
6. Part E
 a. Total Marks: 40
 b. *Six* questions each carrying 10 marks, uniformly covering modules V and VI; *four* questions have to be answered.
 c. A question can have a maximum of three sub-parts.
7. There should be at least 60% analytical/numerical/design questions.